

练习册

主義 肖德好 高中数学

选择性必修第一册

RJA

细分课时

分层设计

落实基础

突出重点

详答单本

天津出版传媒集团

天津人民出版社

图书介绍

【课前预习】精炼呈现,使琐碎知识逻辑更清晰;诊断分析解决易错,排查知识陷阱

【学习目标】

- 1. 能直观认识双曲线的几何特征,会识别双曲线的定义和相关概念.
- 2. 能根据双曲线的几何特征选择适当的平面直角坐标系,根据双曲线定义的代数表达类比导出双曲线的标准方程.
- **3.** 能识别焦点在不同坐标轴上的双曲线的标准方程,能说出标准方程中特征量的关系,能初步应用双曲线的定义和标准方程解决一些相关问题.

课前预又		知识导学	素养初识
◆ 知识点一	- 双曲线的定义		
1 . 双曲线的	定义:平面内与两个定	点 F_1,F	2 的距
离的	等于非零常数()台	内点的
轨迹叫作双田	曲线. 这两个定点叫作邓	又曲线的	焦点,
两焦点间的距	距离叫作双曲线的	·	
2. 双曲线上	动点 M 的集合表示: P	=	
	,焦距常用		表示.

【诊断分析】判断正误.(请在括号中打"√"或"×")

(1) 已知两定点 F_1 (-3,0), F_2 (3,0), 满足条件 $|PF_1|-|PF_2|=5$ 的动点 P 的轨迹是双曲线. () (2) 已知两定点 F_1 (-3,0), F_2 (3,0), 满足条件 $||PF_1|-|PF_2||=6$ 的动点 P 的轨迹是双曲线. ()

(3)已知两定点 $F_1(-3,0), F_2(3,0)$,满足条件 $||PF_1|-|PF_2||=7$ 的动点 P 的轨迹是双曲线.

()

【课中探究】采用分层式设计,通过题组、拓展形式凸显讲次重点

◆ 探究点二 直线与圆的相交弦问题

倒2 已知圆 $O: x^2 + y^2 = 8$ 内有一点 $P_0(-1,2)$, 过点 P_0 且倾斜角为 α 的直线与圆 O 相交于 A,B 两点.

- (1)当 $\alpha = \frac{3\pi}{4}$ 时,求弦 AB 的长;
- (2)当弦 AB 的长最短时,求直线 AB 的方程.

要式1 已知圆 $C: x^2 + (y-1)^2 = 5$,直线 l: mx - y + 1 - m = 0.

- (1)求证:直线 l 与圆 C 总有两个不同的交点;
- (2)若直线 l 与圆 C 交于 A , B 两点 , 且 $|AB| = \sqrt{17}$, 求 m 的值.

◆ 探究点三 求椭圆的离心率

倒 3 (1)已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,其上 顶点为 A,左、右焦点分别为 F_1 , F_2 ,且 $\triangle AF_1F_2$ 为 等边三角形,则椭圆 C 的离心率为 ()

A.
$$\frac{1}{2}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{\sqrt{3}}{2}$$

D. $\frac{2}{3}$

要式 $(1)[2024 \cdot 黄山高二期中] 已知矩形 <math>ABCD$ 的四个顶点都在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上,边 AD 和 BC 分别经过椭圆的左、右焦点,且 2|AB| = |BC|,则该椭圆的离心率为

A.
$$-1+\sqrt{2}$$

B. $2-\sqrt{2}$

C.
$$-1+\sqrt{3}$$

D. $2 - \sqrt{3}$

「素养小结〕

求椭圆离心率的值(或范围)的步骤:

- (1)利用条件建立关于a,b,c 的关系式(等式或不等式); (2)借助 $a^2 = b^2 + c^2$ 消去b,转化为关于a,c 的齐次方程或不等式;
- (3)将方程或不等式两边同时除以a的最高次幂,得到 关于e的方程或不等式;
- (4)解方程或不等式即可求得 e 的值或取值范围.

拓展 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0), M, N$ 分 别为椭圆 C 的左、右顶点,若在椭圆 C 上存在一点 H,使得 $k_{MH} \cdot k_{NH} \in \left(-\frac{1}{2}, 0\right)$,则椭圆 C 的离心率 e 的取值范围为

A.
$$(\frac{\sqrt{2}}{2}, 1)$$

B.
$$(0, \frac{\sqrt{2}}{2})$$

C.
$$(\frac{\sqrt{3}}{2},1)$$

D.
$$(0, \frac{\sqrt{3}}{2})$$

本章总结提升精选典型题和高考题,提前对接高考

◆ 题型一 圆锥曲线的标准方程与定义

[类型总述](1)焦点三角形问题;(2)涉及焦点、 准线、离心率、圆锥曲线上的点中的三者,常用定 义解决问题:(3)求轨迹问题、最值问题、曲线 方程.

倒1 (1)[2023·天津卷] 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a)$

(0,b>0)的左、右焦点分别为 F_1,F_2 . 过 F_2 作其中 一条渐近线的垂线,垂足为 P. 已知 $|PF_2|=2$,直

线 PF_1 的斜率为 $\frac{\sqrt{2}}{4}$,则双曲线的方程为 ()

A.
$$\frac{x^2}{8} - \frac{y^2}{4} = 1$$
 B. $\frac{x^2}{4} - \frac{y^2}{8} = 1$

B.
$$\frac{x^2}{4} - \frac{y^2}{8} = 1$$

C.
$$\frac{x^2}{4} - \frac{y^2}{2} = 1$$
 D. $\frac{x^2}{2} - \frac{y^2}{4} = 1$

D.
$$\frac{x^2}{2} - \frac{y^2}{4} =$$

◆ 题型二 圆锥曲线的性质

[类型总述](1)已知基本量求离心率的值或取值 范围;(2)已知圆锥曲线的方程求参数的取值范 围;(3)已知曲线的某些性质求曲线方程或求曲线 的其他性质.

倒2 (1)[2023・新课标 I 卷] 设椭圆 C_1 : $\frac{x^2}{c^2}$ + $y^2 = 1(a > 1), C_2: \frac{x^2}{4} + y^2 = 1$ 的离心率分别为 e_1 ,

$$e_2$$
, $\stackrel{.}{\text{H}} e_2 = \sqrt{3} e_1$, $\stackrel{.}{\text{M}} a =$ (

A.
$$\frac{2\sqrt{3}}{3}$$
 B. $\sqrt{2}$

B.
$$\sqrt{2}$$

C.
$$\sqrt{3}$$

D.
$$\sqrt{6}$$

课时训练选题兼顾典型性和新颖性以及情境命题,增强学生思维训练

- **6.** 「2024 北京大兴区高二期中〕已知点 *M*₁(−3, 0)和点 $M_2(3,0)$, 动点 M(x,y)满足 $|MM_1| =$ $2|MM_2|$,则点 M 的轨迹方程为
 - A. $x^2 + y^2 + 18x + 9 = 0$
 - B. $x^2 + y^2 + 6x + 9 = 0$
 - C. $x^2 + y^2 + 6x 9 = 0$
 - D. $x^2 + y^2 10x + 9 = 0$

- **15.** (多选题)某同学在研究函数 $f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 + 1}$ |x-1|的最值时,联想到两点间的距离公式,从 而将函数变形为 $f(x) = \sqrt{(x-0)^2 + (0-1)^2} +$ $\sqrt{(x-1)^2+(0-0)^2}$,则下列结论正确的是()
 - A. 函数 f(x)的最小值为 $\frac{\sqrt{2}}{2}$
 - B. 函数 f(x)的最小值为 $\sqrt{2}$
 - C. 函数 f(x) 没有最大值
 - D 函数 f(x)有最大值

精选试题,穿插设置滚动习题,无缝对接阶段性复习巩固

▶滚动习题(三)

(时间:45 分钟 分值:100 分)

- 一、单项选择题(本大题共6小题,每小题5分,共30分)
- 2. 「2024·福建龙岩名校高二期中] 已知直线 kx+ y-6k+2=0 恒过点 P,则点 P 的坐标为 ()
 - A. (0, -2)
- B. (-2,0)
- C. (6, -2)
- D. (-6,2)
- 5. [2024·武汉华师大一附中高二期末] 已知直线 l 的方程为 $x+y\sin\theta+3=0$ ($\theta\in\mathbf{R}$),则直线l 的 倾斜角α的取值范围是 ()

 - A. $\left\lceil \frac{\pi}{2}, \frac{3\pi}{4} \right\rceil$ B. $\left\lceil \frac{\pi}{4}, \frac{\pi}{2} \right\rceil$

 - C. $\left\lceil \frac{\pi}{4}, \frac{3\pi}{4} \right\rceil$ D. $\left\lceil \frac{\pi}{4}, \frac{\pi}{2} \right\rangle \cup \left(\frac{\pi}{2}, \frac{3\pi}{4} \right]$

- 二、多项选择题(本大题共2小题,每小题6分,共12分)
- 8. 对于直线 $l_1: ax + 2y + 3a = 0$, $l_2: 3x + (a b)$ 1)y + 3 - a = 0,下列说法正确的是
 - A. " $l_1//l_2$ "的充要条件是"a=3"
 - B. $\leq a = \frac{2}{\pi}$ \bowtie $l_1 \perp l_2$
 - C. 直线 l₁ 过定点(3,0)
 - D. 点 P(1,3)到直线 l_1 的距离的最大值为 5
- 三、填空题(本大题共3小题,每小题5分,共15分)
- 9. 经过点 P(2,1), 且在两坐标轴上的截距的绝对 值相等的直线方程为
- **10.** 若直线 l 与直线 x+y-1=0 关于直线 y=2 对 称,则直线 l 的一般式方程为

Contents

01 第一章 空间向量与立体几何	
→ PART ONE	练 001/导 139
1.1.1 空间向量及其线性运算	练 001/导 139
1.1.2 空间向量的数量积运算	练 003/导 142
1.2 空间向量基本定理	练 005/导 146
▶ 滚动习题(一)[范围1.1~1.2]	练 007
1.3 空间向量及其运算的坐标表示	练 009/导 149
1.3.1 空间直角坐标系	练 009/导 149
1.3.2 空间向量运算的坐标表示	练 011/导 151
1.4 空间向量的应用	练 013/导 154
1.4.1 用空间向量研究直线、平面的位置关系	练 013/导 154
第 1 课时 空间中点、直线和平面的向量表示	练 013/导 154
第2课时 空间中直线、平面的平行	练 015/导 156
第3课时 空间中直线、平面的垂直	练 017/导 158
1.4.2 用空间向量研究距离、夹角问题	练 019/导 160
第1课时 用空间向量研究距离问题	练 019/导 160
第2课时 用空间向量研究夹角问题	练 022/导 163
▶ 滚动习题(二) [范围 1.3~1.4]	练 025
▶ 本章总结提升	导 166
92 第二章 直线和圆的方程	
→ PART TWO···································	······ 练 027/导 171
2.1.1 倾斜角与斜率	练 027/导 171
2.1.2 两条直线平行和垂直的判定	练 029/导 173
2. 2 直线的方程	练 031/导 175
2. 2. 1 直线的点斜式方程	练 031/导 175
2. 2. 2 直线的两点式方程	练 033/导 177
2.2.3 直线的一般式方程	练 035/导 179
2.3 直线的交点坐标与距离公式	练 037/导 181
2.3.1 两条直线的交点坐标	练 037/导 181
2.3.2 两点间的距离公式	练 037/导 181
2.3.3 点到直线的距离公式	练 039/导 184
2.3.4 两条平行直线间的距离	练 039/导 184
▶ 滚动习题(三)[范围 2.1~2.3]	练 041

2.4 圆的方程	练 043/导 186	
2.4.1 圆的标准方程	练 043/导 186	
2.4.2 圆的一般方程	练 045/导 188	
2.5 直线与圆、圆与圆的位置关系	练 047/导 190	
2.5.1 直线与圆的位置关系(A)	练 047/导 190	
2.5.1 直线与圆的位置关系(B)	练 049	
2.5.2 圆与圆的位置关系	练 051/导 193	
▶ 滚动习题(四)[范围 2.4~2.5]	练 053	
● 本章总结提升	导 195	
03 第三章 圆锥曲线的方程		
PART THREE		
3.1 椭圆	练 055/导 199	
3.1.1 椭圆及其标准方程	练 055/导 199	
第 1 课时 椭圆及其标准方程	练 055/导 199	
第2课时 轨迹问题	练 057/导 201	
3. 1. 2 椭圆的简单几何性质	练 059/导 202	
第 1 课时 椭圆的简单几何性质	练 059/导 202	
第2课时 直线与椭圆的位置关系	练 061/导 204	
第3课时 直线与椭圆的综合应用	练 063/导 206	
▶ 滚动习题(五)[范围 3.1]	练 066	
3.2 双曲线	练 069/导 208	
3. 2. 1 双曲线及其标准方程	练 069/导 208	
3.2.2 双曲线的简单几何性质	练 071/导 211 <i>体</i> 071/导 244	
第 1 课时 双曲线的简单几何性质	练 071/导 211 练 072/导 242	
第 2 课时 直线与双曲线的综合应用 微专题 圆锥曲线的离心率	练 073/导 213 导 216	
3.3 抛物线		
	练 075/导 218	
	练 075/导 218	
3.3.2 抛物线的简单几何性质 第1课时 抛物线的简单几何性质	练 077/导 220 练 077/导 220	
第2课时 直线与抛物线的位置关系	练 077/ 导 220 练 079/导 222	
第2条的 直线可滤物线的位置关系 ● 滚动习题(六)「范围 3. 2~3. 3〕	练 0/ _{7/} 夺 222 练 081	
● 本章总结提升		
♥ 本早芯给徒介	导 225	
◆ 参考答案(练习册)	练 083	
◆ 参考答案(导学案)	导 229	
>> 测 评 卷		
单元素养测评卷(一)[第一章]	卷 01	
单元素养测评卷(二) _[第二章]	卷 03	
单元素养测评卷(三)A _[第三章]	卷 05	
单元素养测评卷(三)B _[第三章]	卷 07	
模块素养测评卷	卷 09	
参考答案	卷 11	

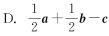
空间向量及其运算 1. 1

1, 1, 1 空间向量及其线性运算

一、选择题

- 1. 下列命题中是假命题的是
 - A. 任意向量与它的相反向量不相等
 - B. 和平面向量类似,任意两个空间向量都不能 比较大小
 - C. 如果 |a| = 0,那么 a = 0
 - D. 两个相等的向量,若起点相同,则终点也相同
- **2**. 在三棱锥 O -ABC 中, \overrightarrow{OA} + \overrightarrow{AB} - \overrightarrow{CB} =
 - A. \overrightarrow{OA}
- B. \overrightarrow{AB}
- C. \overrightarrow{OC}
- D. \overrightarrow{AC}
- **3**. 若空间向量 a, b 不共线,且-a + (3x y)b =xa+3b,则 xy=
- A. 1 B. 2 C. 4
- 4. 「2024 · 安徽桐城中学高二质检〕如图,在平行 六面体 $ABCD - A_1B_1C_1D_1$ 中, AC 与 BD 的交点 为 M, 设 $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $\overrightarrow{AA_1} = c$, 则 $\overrightarrow{MC_1} = c$

- A. $-\frac{1}{2}a \frac{1}{2}b c$
- B. $\frac{1}{2}a + \frac{1}{2}b + c$
- C. $\frac{1}{2}a \frac{1}{2}b c$



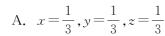
5. 已知 O 为空间中任意一点,若四边形 ABCD 满 足 $\overrightarrow{AO} + \overrightarrow{OB} = \frac{3}{5}(\overrightarrow{DO} + \overrightarrow{OC})$,则四边形 ABCD

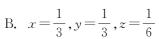
- A. 空间四边形
- B. 平行四边形
- C. 梯形
- D. 矩形
- **6**. 在正方体 $ABCD A_1B_1C_1D_1$ 中,下列各组向量

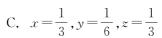
与
$$\overrightarrow{AC}$$
 共面的是
A. $\overrightarrow{B_1D_1}$, $\overrightarrow{B_1B}$

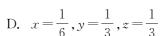
- B. $\overrightarrow{C_1C}, \overrightarrow{A_1D}$
- C. $\overrightarrow{BA_1}, \overrightarrow{AD_1}$
- D. $\overrightarrow{A_1D_1}, \overrightarrow{A_1A}$

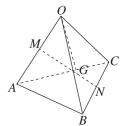
7. [2024·辽宁朝阳高二期中] 如图,在三棱锥 O-ABC 中, M, N 分别是棱 OA, BC 的中点, 点 G在线段 MN 上,且 $\overrightarrow{MG} = 2\overrightarrow{GN}$,设 $\overrightarrow{OG} = x\overrightarrow{OA} +$ $\nu \overrightarrow{OB} + z \overrightarrow{OC}$.则



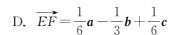








- 8. (多选题)「2024·合肥一中高二期中]如图,在 四棱锥 P-ABCD 中, $\overrightarrow{AP} = a$, $\overrightarrow{AB} = b$, $\overrightarrow{AD} = c$, 若 $\overrightarrow{PE} = \overrightarrow{ED} \cdot \overrightarrow{CF} = 2\overrightarrow{FP} \cdot \square$
 - A. $\overrightarrow{BE} = \frac{1}{2}a \frac{1}{2}b + c$
 - B. $\overrightarrow{BF} = \frac{2}{3}a \frac{2}{3}b + \frac{1}{3}c$
 - C. $\overrightarrow{DF} = \frac{2}{2}a + \frac{1}{2}b \frac{2}{2}c$





9. (多选题)已知 O 为空间中任一不与 M,A,B,C重合的点,则在下列条件中,不能使空间中四点 M,A,B,C 共面的是

A.
$$\overrightarrow{OM} = 2\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}$$

B.
$$\overrightarrow{OM} = \frac{1}{5}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB} + \frac{1}{2}\overrightarrow{OC}$$

- C. $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \mathbf{0}$
- D. $\overrightarrow{OM} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0}$

二、填空题

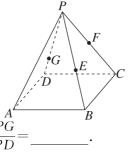
10. 「2024·河北沧州高二期中〕已知空间向量 a,

$$b$$
, c , 化简 $\frac{1}{2}$ ($a+2b-3c$)+5($\frac{2}{3}a-\frac{1}{2}b$ +

$$\left(\frac{2}{3}\boldsymbol{c}\right) - 3(\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c}) = \underline{\hspace{1cm}}$$

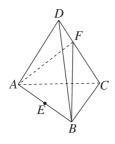
11. 下列说法中正确的是 .(填序号)

- ①若点A,B,C,D 在一条直线上,则 \overrightarrow{AB} 与 \overrightarrow{CD} 是共线向量:
- ②若点 A, B, C, D 不在一条直线上, 则 \overrightarrow{AB} 与 \overrightarrow{CD} 一定不是共线向量;
- ③若向量 \overrightarrow{AB} 与 \overrightarrow{CD} 是共线向量,则 A ,B ,C ,D 四点必在一条直线上;
- ④若向量 \overrightarrow{AB} 与 \overrightarrow{CD} 是共线向量,则A,B,C 三 点必在一条直线上.
- 12. $[2024 \cdot \dot{\Gamma}$ 东东莞外国语学校高二月考] 如图,在正四棱锥 P-ABCD 中,过点A 作一个平面分别交棱PB, PC, PD 于点 E, F, AC G, $\Xi \frac{PE}{PB} = \frac{3}{5}$, $\frac{PF}{PC} = \frac{1}{2}$, 则 $\frac{PG}{PD}$



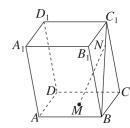
三、解答题

- **13.** 如图,在四面体 D-ABC 中, E 是棱 AB 的中点, CF = 2FD. 化简下列各式,并在图中标出化简得到的向量:
 - $(1)\overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD}$;
 - $(2)\overrightarrow{AF} \overrightarrow{BF} \overrightarrow{AC}$:
 - $(3)\frac{1}{2}\overrightarrow{AB} + \overrightarrow{BC} + \frac{2}{3}\overrightarrow{CD}$.



- **14.** 如图所示,已知几何体 ABCD - $A_1B_1C_1D_1$ 是平行六面体.
 - (1)化简 $\frac{1}{2}\overrightarrow{AA_1}$ + \overrightarrow{BC} + $\frac{2}{3}\overrightarrow{AB}$ (用 \overrightarrow{EF} 表示),并 点明 E,F 的具体位置;

(2) 设 M 是底面 ABCD 的中心, N 是侧面 BCC_1B_1 的对角线 BC_1 上一点, 且 $C_1N=\frac{1}{4}C_1B$, 设 $\overrightarrow{MN}=\alpha\overrightarrow{AB}+\beta\overrightarrow{AD}+\gamma\overrightarrow{AA_1}$, 试求 α , β , γ 的值.



▶ 思维探索 选做题

15. [2024 • 合肥一中高二期中] 已知 O, A, B, C 为空间中不共面的四个点,且 $\overrightarrow{OP} = \frac{1}{3}\overrightarrow{OA} + \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}(\lambda, \mu \in \mathbf{R})$. 若 P, A, B, C 四点共面,则函数 $f(x) = x^2 - 3(\lambda + \mu)x - 1(x \in [-1, 2])$ 的最小值是

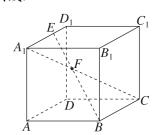
A. 2

B. 1

C. -1

D. -2

- **16.** 如图,在正方体 $ABCD-A_1B_1C_1D_1$ 中, E 在 A_1D_1 上,且 $\overrightarrow{A_1E}=2\overrightarrow{ED_1}$, F 在体对角线 A_1C 上,且 $\overrightarrow{A_1F}=\frac{2}{3}\overrightarrow{FC}$. 设 $\overrightarrow{AB}=a$, $\overrightarrow{AD}=b$, $\overrightarrow{AA_1}=c$.
 - (1)用 a,b,c 表示 \overrightarrow{EB} ;
 - (2)求证:E,F,B 三点共线.



1.1.2 空间向量的数量积运算

一、选择题

- 1. 对于空间任意两个非零向量 a,b, " $a \cdot b < 0$ "是 " $\langle a,b\rangle$ 为钝角"的
 - A. 充分不必要条件
 - B. 必要不充分条件
 - C. 充要条件
 - D. 既不充分也不必要条件
- **2**. 在三棱锥 A-BCD 中,若 $AB \perp BD$, $CD \perp BD$, $BD=1.则 \overrightarrow{AC} \cdot \overrightarrow{BD}=$ ()
 - A. $\frac{1}{2}$

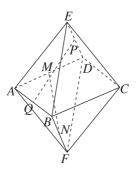
B. 1

- C. $\sqrt{3}$
- D. 0
- **3**. 在棱长为 1 的正方体 $ABCD A_1B_1C_1D_1$ 中,设 $\overrightarrow{AB} = a, \overrightarrow{AD} = b, \overrightarrow{AA_1} = c, \emptyset \ a \cdot (b+c) = ($ A. 2 B. 0 C. -1 D. -2
- **4**. 如图,在正方体 *ABCD-A'B'C'* $D' \oplus \langle \overrightarrow{A'B}, \overrightarrow{B'D'} \rangle = ()_{A'}$
 - A. 30°
- B. 60°
- C. 90°
- D. 120°
- **5**. 在三棱锥 *P-ABC* 中, $\angle PAB = \angle ABC = \frac{\pi}{3}, \langle \overrightarrow{PA}, \overrightarrow{BC} \rangle = \frac{2\pi}{3}, PA = 2,$

$$AB = 1, BC = 3, \emptyset$$
 $PC =$ (

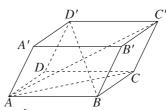
- A. $\sqrt{7}$
- B. 2
- C. $\sqrt{3}$
- D. 1
- 6. [2024 安徽桐城中学高二质检] 一个结晶体的 形状为平行六面体 $ABCD-A_1B_1C_1D_1$, 若以顶点 A 为端点的三条棱长都相等,且它们彼此的夹角 都是 60° ,则 BD_1 与 AC 所成角的余弦值为()
 - A. $\frac{\sqrt{3}}{2}$ B. $\frac{1}{2}$ C. $\frac{1}{6}$ D. $\frac{\sqrt{6}}{6}$

- 7. [2024·湛江一中月考] 柏 拉图多面体是柏拉图及其 追随者对正多面体进行系 统研究后而得名的几何体. A 如图是棱长均为1的柏拉 图多面体 EABCDF, P,Q, M, N 分别为 DE, AB,



- AD,BF 的中点,则 $\overrightarrow{PQ} \cdot \overrightarrow{MN} =$

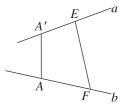
- A. $\frac{1}{2}$ B. $\frac{1}{4}$ C. $-\frac{1}{4}$ D. $-\frac{1}{2}$
- 8. (多选题)[2024 · 湖南娄底高二期中] 已知正方 体 ABCD - A'B'C'D' 的棱长为 1,设 $\overrightarrow{AB} = a$, $\overrightarrow{AD} =$ $\mathbf{b}, \overrightarrow{AA'} = \mathbf{c},$ 则下列各式的值为 1 的有 ()
 - A. $a \cdot (b+c)$
 - B. $a \cdot (a+b+c)$
 - C. $(a+b) \cdot (b+c)$
 - D. $(a+b) \cdot c$
- **9**. (多选题)如图,在平行六面体 *ABCD-A'B'C'D'* 中,已知 AB = 5, AD = 4, AA' = 2, $\angle BAD =$ $\angle BAA' = \angle DAA' = 60^{\circ}$,则下列说法正确的是



- A. $\overrightarrow{AB} \cdot \overrightarrow{AD} = 10$
- B. $\overrightarrow{AB} \cdot \overrightarrow{AC'} = 40$
- C. $|\overrightarrow{BD}'| = \sqrt{21}$
- D. $\triangle ACC'$ 为钝角三角形

二、填空题

- 10. [2024·山东烟台高二期中] 已知空间向量 a, b, c 满足 $|a| = 2, |b| = 3, |c| = \sqrt{7}$ 且 a + b +c=0,则 a 与 b 的夹角大小为 .
- **11**. 在四面体 O-ABC 中, 棱 OA, OB, OC 两两垂 直,且OA = 1,OB = 2,OC = 3,G为 $\triangle ABC$ 的 重心,则 $\overrightarrow{OG} \cdot (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) =$
- **12**. [2024·杭州浙大附中高二 期中]如图,两条异面直线 a,b 所成的角为 60°,在直线 a,b 上分别取点 A',E 和点 A,F,使 $AA' \perp a$ 且 $AA' \perp$

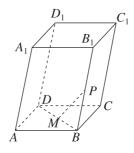


b. 若 A'E = 2, AF = 3, $EF = \sqrt{23}$, 则线段 AA'的长为 _____.

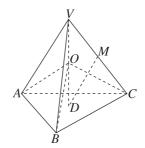
班级

三、解答题

- 13. [2024 · 浙江浙南名校联盟高二联考] 如图,在平行六面体 ABCD -A₁B₁C₁D₁ 中,底面 ABCD 是边长为 2 的正方形,侧棱 AA₁ = 4,且 ∠A₁AD=∠A₁AB=60°, M 为 BD 的中点, P 为 BB₁ 的中点,设 AB=a, AD=b, AA₁=c.
 - (1)用向量 a,b,c 表示向量 \overrightarrow{PM} ;
 - (2)求线段 PM 的长度.

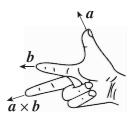


- **14.** 如图,正四面体 V-ABC 的高 VD 的中点为 O, VC 的中点为 M.
 - (1)求证:AO,BO,CO 两两垂直;
 - (2)求 $\langle \overrightarrow{DM}, \overrightarrow{AO} \rangle$ 的大小.



▶ 思维探索 选做题

15. (多选题)[2024・重庆万州 区高二质检] 在三维空间 中, a × b 叫做向量 a 与 b 的外积, 它是一个向量, 且 满足下列两个条件: ① a ⊥



 $(a \times b)$, $b \perp (a \times b)$, 且 a, b, $a \times b$ 三个向量构成右手系 (如图所示); ② $|a \times b| = |a| |b|$ $\sin \langle a, b \rangle$. 已知正方体 ABCD $-A_1B_1C_1D_1$ 的表面积为 S, 则下列结论正确的有

A.
$$|\overrightarrow{AB_1} \times \overrightarrow{AC}| = |\overrightarrow{AD_1} \times \overrightarrow{DB}|$$

B.
$$\overrightarrow{AB} \times \overrightarrow{AD} = \overrightarrow{AD} \times \overrightarrow{AB}$$

C.
$$S = 6 | \overrightarrow{BC} \times \overrightarrow{AC} |$$

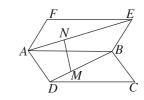
D.
$$\overrightarrow{A_1C_1} \times \overrightarrow{A_1D}$$
 与 $\overrightarrow{BD_1}$ 共线

16. $[2024 \cdot 江苏苏州星海实验学校高二月考]$ 如图, 在矩形 ABCD 和矩形 ABEF 中, AB=4, AD=AE=3 $\angle DAE=\frac{\pi}{DM}$ $\overrightarrow{DM}=3\overrightarrow{DB}$ $\overrightarrow{AN}=$

$$AD = AF = 3$$
, $\angle DAF = \frac{\pi}{3}$, $\overrightarrow{DM} = \lambda \overrightarrow{DB}$, $\overrightarrow{AN} = \lambda \overrightarrow{AE}$, $0 < \lambda < 1$, $\exists \overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $\overrightarrow{AF} = c$.

$$(1)$$
当 $\lambda = \frac{1}{2}$ 时,求 MN 与 AE 夹角的余弦值.

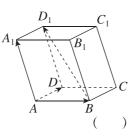
(2)是否存在 λ 使得 MN 上平面 ABCD? 若存在,求出 λ 的值,若不存在,请说明理由.



空间向量基本定理 1. 2

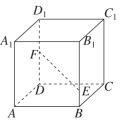
一、选择题

- 1. 下列说法中正确的是
 - A. 任何三个不共线的向量可构成空间的一个 基底
 - B. 空间的基底有且仅有一个
 - C. 两两垂直的三个非零向量可构成空间的一个 基底
 - D. 直线的方向向量有且仅有一个
- 2. 如图,在平行六面体 AB- $CD-A_1B_1C_1D_1$ 中,已知 A_1 $\overrightarrow{AB} = a \cdot \overrightarrow{AD} = b \cdot \overrightarrow{AA_1} = c$. 则用向量 a,b,c 可表示向 量 $\overline{BD_1}$ 为

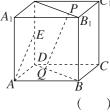


- A. a+b+c
- B. a-b+c
- C. a+b-c
- D. -a+b+c
- 3. 「2024·广东湛江二十一中高二期中]已知{a, b,c 是空间的一个基底, 若 p=a+b,q=a-b, 则
 - A. a, p, q 可构成空间的一个基底
 - B. b, p, q 可构成空间的一个基底
 - C. c, p, q 可构成空间的一个基底
 - D. p,q 与 a,b,c 中的任何一个都不能构成空间 的一个基底
- **4.** 已知 $\{e_1, e_2, e_3\}$ 是空间的一个基底,向量 a = $e_1 + e_2 + e_3$, $b = e_1 + e_2 - e_3$, $c = e_1 - e_2 + e_3$, $d = e_1 + e_2 + e_3$ $e_1 + 2e_2 + 3e_3$,若 d = xa + yb + zc,则 x, y, z 的 值分别为
 - A. $\frac{5}{2}$, -1, $-\frac{1}{2}$ B. $\frac{5}{2}$, 1, $\frac{1}{2}$
 - C. $-\frac{5}{2}$, 1, $-\frac{1}{2}$ D. $\frac{5}{2}$, 1, $-\frac{1}{2}$
- **5**. 已知三棱柱 ABC- $A_1B_1C_1$ 各条棱的长都相等, 且 $\angle BAA_1 = \angle CAA_1 = 60^\circ$,则异面直线 AB_1 与 BC1所成角的余弦值为

6. 「2024·河北邢台高二期末】 如图,在正方体 ABCD- $A_1B_1C_1D_1$ 中,E,F分别在 棱 BB_1 和 DD_1 上,且 DF = $\frac{1}{2}DD_1$. $\rightleftarrows \overrightarrow{EF} = x\overrightarrow{AB} +$



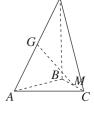
- $y\overrightarrow{AD} + z\overrightarrow{AA}_1$,若 $x + y + z = \frac{1}{4}$,则 $\frac{BE}{BB} = \frac{1}{4}$
- A. $\frac{1}{2}$ B. $\frac{1}{4}$ C. $\frac{1}{3}$ D. $\frac{1}{6}$
- 7. 如图,在正方体 ABCD- $A_1B_1C_1D_1$ 中, E 是棱 D_1D A_{11} 的中点, P, Q 分别为线段 B_1D_1 , BD 上的点,且 $3B_1P=$ PD_1 ,若 $PQ \perp AE$, $\overrightarrow{BD} = \lambda \overrightarrow{DQ}$. 则λ的值为



- A. 3
 - B. 4
- C. -3
- 8. (多选题)「2024·郑州高二期中]下列说法中正 确的有
 - A. 已知 a//b,则 a,b 与任一向量都不能构成空 间的一个基底
 - B. 设A,B,M,N 是空间中的四个点,若 \overrightarrow{BA} , \overrightarrow{BM} , \overrightarrow{BN} 不能构成空间的一个基底,则 A, B,M,N 四点共面
 - C. 设O 是空间中任一不与P,A,B,C 重合的 点.若 $\overrightarrow{OP} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0}$.则 P.A.B. C四点共面
 - D. 已知 a,b,c 可构成空间的一个基底, 若m=a+c,则 a,b,m 也可构成空间的一个基底
- **9.** (多选题)如图,在三棱锥 D-ABC 中, \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 两两夹角均为 $\frac{\pi}{3}$,且 $|\overrightarrow{AB}| = |\overrightarrow{AC}| =$

 $\frac{1}{2}|\overrightarrow{AD}| = 1$,若 G,M 分别为棱 AD,BC 的中点, 厠

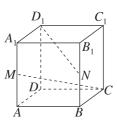
- A. $|\overrightarrow{MG}| = \frac{3\sqrt{3}}{4}$
- B. $|\vec{MG}| = \frac{\sqrt{3}}{2}$
- C. 异面直线 AC 与 DB 所成角 的正弦值为 $\frac{\sqrt{33}}{6}$



D. 异面直线 AC 与 DB 所成角的正弦值为 $\frac{\sqrt{3}}{c}$

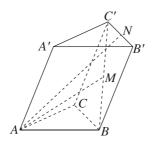
二、填空题

- **10**. 已知 $\{a,b,c\}$ 是空间的一个基底,则可以从向量a,b,c,a+b,a-b,a+c,a-c,b+c,b-c中选出三个向量构成空间的一个基底,请你写出一个不同于 $\{a,b,c\}$ 的基底:
- 11. [2024 · 河南信阳信合外国 语高级中学高二期中] 如图,在正四面体 P-ABC 中, M,N 分别为 PA,BC 的中 A 点,D 是线段 MN 上一点, 且 ND=2DM,若 PD=xPA+yPB+zPC,则 x+y+z 的值为 .
- **12.** 如图,在正方体 *ABCD A*₁*B*₁*C*₁*D*₁ 中, *M*, *N* 分别 *A*₁ 为棱 *A*₁*A* 和 *B*₁*B* 的中点, *M* 则异面直线 *CM* 和 *D*₁*N* 所成角的余弦值为_____.



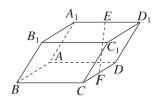
三、解答题

13. 如图所示,在三棱柱 ABC-A'B'C'中,设 $\overrightarrow{AA'}$ =a, \overrightarrow{AB} =b, \overrightarrow{AC} =c,M 是 BC'的中点,N 是 B'C'的中点,用基底 $\{a,b,c\}$ 表示以下各向量: $(1)\overrightarrow{AM}$; $(2)\overrightarrow{AN}$.



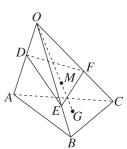
14. $[2024 \cdot 江西宜春高二期中]$ 如图,在平行六面体 $ABCD - A_1B_1C_1D_1$ 中, E, F 分别为楼 A_1D_1 , CD 的中点,且 $\angle B_1BC = \angle B_1BA = \frac{\pi}{3}$, $\angle CBA = \frac{\pi}{2}$, AB = BC = 3, $BB_1 = 2$.

- (1) 求线段 EF 的长度;
- (2)求直线 AD 与直线 EF 夹角的余弦值.



▶ 思维探索 选做题

15. $[2024 \cdot \dot{\Gamma}$ 东揭阳普宁二中高二期中] 如图,在三棱锥 O -ABC 中,点G 为 $\triangle ABC$ 的重心,点M 是线段OG 上靠近点G 的三等分点,过点M 的平面分别交棱OA,



OB,OC 于点 D,E,F, 若 $\overrightarrow{OD} = k\overrightarrow{OA}$, $\overrightarrow{OE} = m\overrightarrow{OB}$, $\overrightarrow{OF} = n\overrightarrow{OC}$, 则 $\frac{1}{k} + \frac{1}{m} + \frac{1}{n} =$ ()

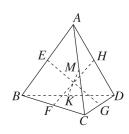
A.
$$\frac{2}{9}$$

B.
$$\frac{2}{3}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{9}{2}$$

16. 如图,在四面体 A-BCD 中,E,F,G,H,K,M 分别为棱 AB,BC,CD,DA,BD,AC 的中点,且 EG=FH=KM,求证:AB \bot CD,AC \bot BD,AD \bot BC.



▶ 滚动习题(—)

(时间:45 分钟 分值:100 分)

一、单项选择题(本大题共6小题,每小题5分,共30分)

- 1. [2024・浙江温州高二期中] 在平行六面体 AB- $CD-A_1B_1C_1D_1$ 中,化简 $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{BB_1}=$ () A. $\overrightarrow{A_1C}$ B. $\overrightarrow{AC_1}$ C. $\overrightarrow{BD_1}$
- **2**. $\lceil 2024 \cdot$ 河南信阳高二期中 \rceil 已知 $\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{PC}$ 不共面, $\overrightarrow{PM} = (3 - x - y)\overrightarrow{PA} + x\overrightarrow{PB} + (y - 2)$ \overrightarrow{PC} .则
 - A. $\forall x, y \in \mathbf{R}, A, B, C, M$ 四点共面
 - B. $\forall x, y \in \mathbf{R}, A, B, C, M$ 四点不共面
 - C. $\forall x, y \in \mathbf{R}, A, B, C, P$ 四点共面
 - D. $\exists x, y \in \mathbf{R}, A, B, C, P$ 四点共面
- 3. 已知空间四边形 ABCD 的每条边和对角线的长 都为 1, F, G 分别是 AD, DC 的中点,则 \overrightarrow{FG} . $\overrightarrow{AB} =$

- A. $\frac{\sqrt{3}}{4}$ B. $\frac{1}{4}$ C. $\frac{1}{2}$ D. $\frac{\sqrt{3}}{2}$
- **4.** 平面上有四个互异的点 A, B, C, D, 已知(\overrightarrow{DB} + $\overrightarrow{DC} + 2\overrightarrow{AD}$) · $(\overrightarrow{AB} - \overrightarrow{AC}) = 0$, A, B, C 不共线, 则△ABC 一定是
 - A. 直角三角形
- B. 等腰直角三角形
- C. 等腰三角形
- D. 无法确定
- **5**. 已知在三棱柱 ABC- $A_1B_1C_1$ 中,点 P 在棱 B_1C_1

上,且
$$B_1P = \frac{1}{3}B_1C_1$$
,则 $\overrightarrow{AP} =$ ()

- A. $\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AA_1}$
- B. $\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AA_1}$
- C. $\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} + \overrightarrow{AA_1}$
- D. $\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \overrightarrow{AA_1}$
- **6**. [2024・杭州高二联考] 已知点 D 在△ABC 确 定的平面内,O 是平面ABC 外任意一点,且满足 $\overrightarrow{OD} = x\overrightarrow{OA} + y\overrightarrow{OB} - \overrightarrow{OC}(x, y \in \mathbf{R})$,则 $x^2 + y^2$ 的 最小值为

 - A. $\frac{4}{5}$ B. $\frac{2\sqrt{5}}{5}$ C. 1

二、多项选择题(本大题共2小题,每小题6分,共12分)

- 7. 若 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 是三个不共面的单位向量,且两 两夹角均为 θ ,则
 - A. θ 的取值范围是(0, π)
 - B. \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{BC} 能构成空间的一个基底
 - C. " $\overrightarrow{OP} = 2\overrightarrow{OA} \overrightarrow{OB} + \overrightarrow{OC}$ "是"P.A.B.C四点 共面"的充分不必要条件
 - D. $(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) \cdot \overrightarrow{BC} = 0$
- 8. 「2024 四川绵阳中学高二月考〕在三棱柱 $ABC-A_1B_1C_1$ 中, P为空间中一点, 且满足 $\overrightarrow{BP} = \lambda \overrightarrow{BC} + \mu \overrightarrow{BB_1}, \lambda, \mu \in [0,1], \emptyset$
 - A. 当 $\lambda = 1$ 时,点 P 在棱 BB_1 上
 - B. $\mu=1$ 时,点 P 在棱 B_1C_1 上
 - C. 当 $\lambda + \mu = 1$ 时,点 P 在线段 B_1C 上
 - D. 当 $\lambda = \mu$ 时,点 P 在线段 BC_1 上

三、填空题(本大题共3小题,每小题5分,共15分)

- 9. 已知空间向量 a,b,c 两两夹角为 60° ,且 |a|=|b| = |c| = 1, ||a| ||a + b - c| =
- **10**. 「2024·福州高二期中] 如图 所示,在平行六面体 ABCD- $A_1B_1C_1D_1$ 中,M 为 A_1C_1 与 B_1D_1 的交点,若存在实数 x, y,z,使向量 $\overrightarrow{BM} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AA}_1$,则 x+2y + 3z =
- **11**. [2024·杭州六县九校联盟 高二期中]如图,在直三棱柱 B $ABC-A_1B_1C_1 + ABC =$ $90^{\circ}, AA_1 = A_1B_1 = A_1C_1 =$ 4,点 E 是棱 CC_1 上一点,且

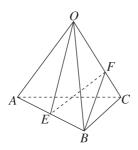
异面直线 A_1B 与 AE 所成角的余弦值为 $\frac{3\sqrt{2}}{10}$, 则 C_1E 的长为 .

班级

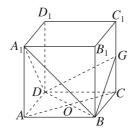
姓名

四、解答题(本大题共3小题,共43分)

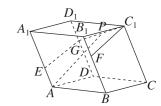
- **12.** $(13 \, \beta)[2024 \cdot$ 广西南宁高二期中] 如图,四面体 O -ABC 的各条棱长均为 2, E 是 AB 的中点, F 在 OC 上,且 $\overrightarrow{OF} = 2\overrightarrow{FC}$.
 - (1)用 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 表示 \overrightarrow{EF} ;
 - (2)求向量 \overrightarrow{OE} 与向量 \overrightarrow{BF} 所成角的余弦值.



13. (15 分)如图所示,在正方体 *ABCD* -*A*₁*B*₁*C*₁*D*₁ 中,*O* 为 *AC* 与 *BD* 的交点,*G* 为 *CC*₁ 的中点, 求证:平面 *A*₁*BD* 上平面 *GBD*.



- **14.** $(15 \, \beta)[2024 \cdot$ 武汉高二期中] 如图,在平行六 面体 $ABCD A_1B_1C_1D_1$ 中, E, F, G 分别在 A_1A , B_1B , D_1D 上, 且 $A_1E = 2EA$, $BF = 2FB_1$, $DG = 2GD_1$.
 - (1)求证: $EG//FC_1$;
 - (2)若底面 ABCD 和侧面 A_1ADD_1 都是正方形,且二面角 A_1 -AD-B 的大小为 120° , AB = 2, P 是 C_1G 的中点,求 AP 的长度.



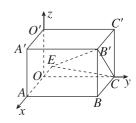
1.3 空间向量及其运算的坐标表示

1.3.1 空间直角坐标系

一、选择题

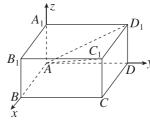
- **1.** [2024・皖中名校联盟高二联考] 在空间直角坐标系 *Oxyz* 中,点(2,-3,5)关于 *Ozx* 平面的对称点的坐标为
 - A. (-2, -3, -5)
- B. (2,3,5)
- C. (5, -3, 2)
- D. (-5, -3, -2)
- **2.** 在空间直角坐标系中,点 A(1,-2,3)与点 B(-1,-2,-3)关于 ()
 - A. x 轴对称
- B. y 轴对称
- C. z 轴对称
- D. 原点对称
- **3.** 在空间直角坐标系 Oxyz 中,已知点 P(-2,1,3),过点 P 作 Ozx 平面的垂线 PQ,垂足为 Q,则点 Q 的坐标为
 - A. (0,1,0)
- B. (0,1,3)
- C. (-2,0,3)
- D. (-2,1,0)
- **4.** 若点 A(-2,2,1)关于 y 轴的对称点为 A', 则向量 $\overline{AA'}$ 的坐标为
 - A. (4, -4, -2)
- B. (0, -4, 0)
- C. (4,0,-2)
- D. (-4,0,2)
- **5.** $[2024 \cdot 安徽淮北高二期中]$ 在长方体 ABCD $A_1B_1C_1D_1$ 中, AB=4, BC=1, $AA_1=3$, 已知向量 a 在基底 $\{\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA_1}\}$ 下的坐标为(2, 1, -3). 若分别以 $\overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DD_1}$ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则a 的坐标为 ()
 - A. (2,1,-3)
- B. (-1,2,-3)
- C. (1, -8, 9)
- D. (-1.8.-9)
- 6. 已知 i,j,k 是空间直角坐标系 Oxyz 中 x 轴、y 轴、z 轴正方向上的单位向量,且 $\overrightarrow{OA} = 3i$, $\overrightarrow{AB} = i+j+k$,则点 B 的坐标为
 - A. (1,-1,1)
- B. (4,1,1)
- C. (1,4,2)
- D. (4,1,2)
- 7. 设 $y \in \mathbb{R}$,则点 P(1,y,2)的集合为 ()
 - A. 垂直于 Ozx 平面的一条直线
 - B. 平行于 Ozx 平面的一条直线
 - C. 垂直于 y 轴的一个平面
 - D. 平行于 y 轴的一个平面

- **8**. (多选题)[2024 · 广东东莞高二期中] 下列说法 正确的是 ()
 - A. 点(1,-2,3)关于 Ozx 平面的对称点的坐标为(1,2,3)
 - B. 点 $\left(\frac{1}{2},1,-3\right)$ 关于 y 轴的对称点的坐标为 $\left(-\frac{1}{2},1,3\right)$
 - C. 点(2,-1,3)到 Oyz 平面的距离为 1
 - D. 在单位正交基底 $\{i, j, k\}$ 下,若 m = 3i 2j + 4k,则 m = (3, -2, 4)
- **9.** (多选题)如图,在长方体 OABC-O'A'B'C'中,OA=1,OC=3,OO'=2,点 E 在线段 AO 的延长线上,且 $OE=\frac{1}{2}$,分别以 \overrightarrow{OA} , \overrightarrow{OC} , $\overrightarrow{OO'}$ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则下列向量坐标表示正确的是
 - A. $\overrightarrow{OC} = (3,0,0)$
 - B. $\overrightarrow{CB}' = (1,0,2)$
 - C. $\overrightarrow{EB'} = (\frac{3}{2}, 3, 2)$
 - D. $\overrightarrow{EC} = (-\frac{1}{2}, 3, 0)$



二、填空题

- **10.** 在空间直角坐标系中,点 P(1,a,b)与点 Q(c,-2,4)关于原点对称,则 abc=
- **11.** 在长方体 ABCD - $A_1B_1C_1D_1$ 中,已知 AB=AD=2, $BB_1=1$,建立如图所示的空间直角坐标系,则 $\overrightarrow{AD_1}$ 的坐标为_____, $\overrightarrow{AC_1}$ 的坐标为_____



12. 在空间直角坐标系 Oxyz 中,点 A(0,1,-1), B(1,1,2),点 B 关于 y 轴的对称点为 C,则 $|\overrightarrow{AC}|$ =

班级 姓名 答题 号 2 3 4 5 6 7

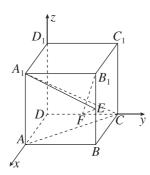
8

9

三、解答题

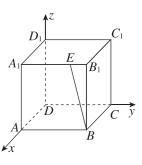
13. 「2024 · 安徽宿州高二联考] 已知{a,b,c}是空 间的一个单位正交基底、 $\{a+b,a-b,c\}$ 是空 间的另一个基底. 若向量 p 在基底 $\{a,b,c\}$ 下的 坐标为(4,2,3),求向量 p 在基底 $\{a+b,a-b\}$ c}下的坐标.

- **14**. 已知正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 2, E, F 分别为棱 BB_1 , DC 的中点,建立空间直角坐 标系,如图所示.
 - (1)写出正方体 $ABCD A_1B_1C_1D_1$ 各顶点的坐 标(不需写出计算过程);
 - (2)写出向量 \overrightarrow{EF} , $\overrightarrow{B_1F}$, $\overrightarrow{A_1E}$ 的坐标(不需写出 计算过程);
 - (3)求向量 $\overrightarrow{A_1C}$ 在向量 \overrightarrow{AC} 上的投影向量的 坐标.



▶ 思维探索 选做题

15. 已知正方体 ABCD- $A_1B_1C_1D_1$ 的棱长为 1, E 在棱 A_1B_1 上,且 A_1 $B_1E = \frac{1}{4}A_1B_1$,建立如



图所示的空间直角坐标 系.则 \overrightarrow{BE} = (

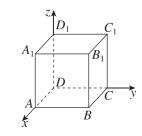
A.
$$(0, \frac{1}{4}, -1)$$
 B. $(-\frac{1}{4}, 0, 1)$

B.
$$\left(-\frac{1}{4},0,1\right)$$

C.
$$\left(0, -\frac{1}{4}, 1\right)$$

C.
$$(0, -\frac{1}{4}, 1)$$
 D. $(\frac{1}{4}, 0, -1)$

- 16. [2024·天津五校联考] 已知正方体 ABCD- $A_1B_1C_1D_1$ 的棱长为 1,以 D 为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD_1}$ 的方向分别为 x, y, z 轴的正方向,建立如 图所示的空间直角坐标系 Dxyz,有一个动点 P在正方体的各个面上运动.
 - (1)当点 P 分别在平行于坐标轴的各条棱上运 动时,探究动点 P 的坐标特征;
 - (2)当点 P 分别在各个面对角线上运动时,探究 动点 P 的坐标特征.



1.3.2 空间向量运算的坐标表示

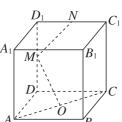
一、选择题

- 1. 在空间直角坐标系中,向量 a = (2, -3, 5), b = (-2, 4, 5),则向量a + b = (
 - A. (0,1,10)
 - B. (-4,7,0)
 - C. (4, -7, 0)
 - D. (-4, -12, 25)
- **2.** 设一地球仪的球心为空间直角坐标系的原点 O,球面上的两个点 A , B 的坐标分别为(1,2,2),(2,-2,1),则 \overrightarrow{AB} |=
 - A. 18
- B. 12
- C. $2\sqrt{3}$
- D. $3\sqrt{2}$
- 3. $[2024 \cdot 湛江一中高二期中]$ 已知 $a = (2, -1, 3), b = (-1, 4, -2), c = (4, 5, \lambda), 若 a, b, c$ 三个向量不能构成空间的一个基底,则实数 λ 的值为
 - A. 0

В. 9

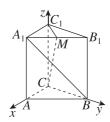
C. 5

- D. 3
- **4.** 已知 $\overrightarrow{AB} = (2, -3, 2), C(2, \frac{1}{2}, -1), D(x, y, y)$
 - 0),且 $\overrightarrow{AB}//\overrightarrow{CD}$,则x,y的值分别为
 - A. 3,1
- B. $4, -\frac{5}{2}$
- C. 3, -1
- D. 1,1
- **5.** $[2024 \cdot 安徽 桐城中学高二质检] 定义 <math>a \otimes b = |a|^2 a \cdot b$, 若向量 a = (1, -2, 2), 向量 b 为单位向量, 则 $a \otimes b$ 的取值范围是
 - A. [6,12]
- B. [0,6]
- C. [-1,5]
- D. [0,12]
- **6.** 如图,在正方体 ABCD $A_1B_1C_1D_1$ 中, O 是底面 $A_1B_1C_1D_1$ 中, O 是底面 ABCD 的中心, M , N 分别 是楼 DD_1 , D_1C_1 的中点,则 直线 OM



- A. 与 AC, MN 都垂直
- B. 垂直于AC,但不垂直于MN
- C. 垂直于 MN, 但不垂直于 AC
- D. 与 *AC*,*MN* 都不垂直

7. 如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle BCA = 90^\circ$, $AC = CC_1 = 2$,M 是 A_1B_1 的中点,以C 为坐标原点,建立如图所示的空间直角坐标系.若 $\overline{A_1B} \perp \overline{C_1M}$,则异面直线 CM 与 A_1B 所成角的余弦值为



A. $\frac{\sqrt{2}}{3}$

B. $\frac{\sqrt{3}}{3}$

C. $\frac{2}{3}$

- D. $\frac{\sqrt{7}}{3}$
- **8.** (多选题)已知向量 a = (1, -2, 2), b = (2, -3, 2), 则下列结论正确的是
 - A. a+b=(3,-5,4)
 - B. $a \cdot b = 12$
 - C. |a-2b|=6
 - D. a,b 不平行
- 9. (多选题)[2024·武汉十一中高二月考]已知空 间四点 O(0,0,0),A(0,1,2),B(2,0,-1),C(3, 2,1),则下列说法正确的是 ()
 - A. $\overrightarrow{OA} \cdot \overrightarrow{OB} = -2$
 - B. 以 OA, OB 为邻边的平行四边形的面积为 $\frac{\sqrt{21}}{2}$
 - C. 点 O 到直线 BC 的距离为 $\sqrt{5}$
 - D. O,A,B,C 四点共面

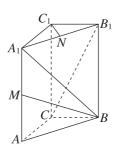
二、填空题

- **10.** 若向量 a = (1, -1, 2), b = (2, 1, -3),则 |2a + b| = .
- **11.** [2024 湖北宜荆荆随高二联考] 已知空间向量 a = (0,1,2), b = (-1,2,2),则向量 a 在向量 b 上的投影向量是
- **12.** [2024・皖中名校联盟高二联考] 已知点 A(1, 2,1), B(3,3,2), $C(\lambda+1,4,3)$, 若 \overrightarrow{AB} , \overrightarrow{AC} 的 夹角为锐角,则 λ 的取值范围为______.

三、解答题

- **13.** 已知向量 a = (-2, -1, 2), b = (-1, 1, 2), c =(x,2,2).
 - (1)当 $|c|=2\sqrt{2}$ 时,若向量 ka+b 与 c 垂直,求 实数 x 和 k 的值;
 - (2)当 $x = -\frac{1}{2}$ 时,求证:向量 c 与向量 a, b共面.

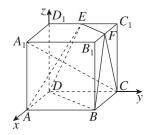
- **14**. 如图,在直三棱柱 $ABC-A_1B_1C_1$ 中,CA=CB = 1, $\angle BCA = 90^{\circ}$, $AA_1 = 2$, M, N 分别是 A_1A , A_1B_1 的中点.
 - (1)求线段 BM 的长;
 - (2)求 $\cos\langle \overrightarrow{BA_1}, \overrightarrow{CB_1} \rangle$ 的值;
 - (3)求证: $A_1B \perp C_1N$.



▶ 思维探索 选做题

15. [2024 · 常德一中高二月 考] 如图,正方体 ABCD - AL $A_1B_1C_1D_1$ 的棱长为 6,点 M 为 CC_1 的中点,点 P 为 底面 $A_1B_1C_1D_1$ 上的动 点,且满足 $BP \perp AM$,则点 P 的轨迹长度为

16. $\pm \left(\overrightarrow{DE} + \overrightarrow{CF} \right) \perp \left(\overrightarrow{DE} - \overrightarrow{CF} \right), \left(\overrightarrow{DE} \right) = 0$ $\frac{\sqrt{17}}{2}$, $30 < \cos\langle \overrightarrow{EF}, \overrightarrow{DB} \rangle < 1$ 这三个条件中任 选一个,补充在下面的问题中,并作答. 问题:如图,在正方体 $ABCD-A_1B_1C_1D_1$,中, 以 D 为坐标原点,建立空间直角坐标系 Dxyz. 已知点 D_1 的坐标为(0,0,2), E 为棱 D_1C_1 上 的动点,F 为棱 B_1C_1 上的动点,_____,则是 否存在点 E, F, 使得 $\overrightarrow{EF} \cdot \overrightarrow{A,C} = 0$? 若存在, 求 出 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的值;若不存在,请说明理由.



1.4 空间向量的应用

1.4.1 用空间向量研究直线、平面的位置关系

第1课时 空间中点、直线和平面的向量表示

一、选择题

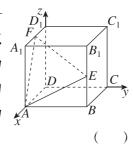
1. [2024·安徽淮南高二联考] 若 A(0,1,2),B(2, 5,8)在直线 l 上,则直线 l 的一个方向向量为

- A. (3,2,1)
- B. (1,3,2)
- C. (2,1,3)
- D. (1,2,3)
- 2. [2024·河南信合外国语高级中学高二期中] 已 知A(1,2,1),B(0,1,2),C(3,1,1),若平面ABC的一个法向量为 n = (x, y, 1),则 n =
 - A. $\left(-\frac{1}{3}, \frac{2}{3}, 1\right)$ B. $\left(\frac{1}{3}, -\frac{2}{3}, 1\right)$
 - C. $\left(\frac{1}{3}, \frac{2}{3}, 1\right)$ D. $\left(\frac{2}{3}, \frac{2}{3}, 1\right)$
- 3. 若 $\mu = (2, -3, 1)$ 是平面 α 的一个法向量,则下 列向量中能作为平面 α 的法向量的是
 - A. (0, -3, 1)
- B. (2,0,1)
- C. (-2, -3, 1)
- D. (-2,3,-1)
- **4.** 已知直线 l 的一个方向向量为m = (2, -1, 3),且 直线 l 过 A(0,y,3)和 B(-1,2,z)两点,则 yz =
 - A. 0

B. 2

C. $\frac{1}{2}$

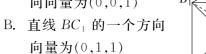
- D. 3
- **5**. 已知平面 α 经过点A(1,1,1)和 B(-1,1,z), n = (1, 0, -1) 是平面 α 的一个法向量,则实数 z =
- A. 3 B. -1 C. -2
- 6. 如图,在正方体 ABCD- $A_1B_1C_1D_1$ 中,以D为原点 建立空间直角坐标系, E 为 BB_1 的中点,F 为 A_1D_1 的 中点,则下列向量中,能作为 A 平面 AEF 的法向量的是



- A. (1, -2, 4)
- B. (-4,1,-2)
- C. (2,-2,1) D. (1,2,-2)

- **7**. 已知直线 l 过点 P(1,0,-1) 且平行于向量a=(2,1,1),直线 l 与点 M(1,2,3) 在平面 α 内,则 平面 α 的法向量不可能是

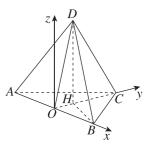
 - A. (1,-4,2) B. $(\frac{1}{4},-1,\frac{1}{2})$
 - C. $\left(-\frac{1}{4}, 1, -\frac{1}{2}\right)$ D. (0, -1, 1)
- 8. (多选题) [2024·杭州六县九校联盟高二联考] 已知平面 ABC 内的两个向量 $\overrightarrow{AB} = (-\sqrt{3}, 1, 1)$ (-4), $\overrightarrow{CB} = (0,2,-2)$, 则平面 (-4) 的一个法向 量可以是
 - A. $(\sqrt{3}, 1, -1)$ B. $(-\sqrt{3}, 1, 1)$
- - C. $(-3,\sqrt{3},\sqrt{3})$
- D. $(1,1,-\sqrt{3})$
- 9. (多选题)[2024•安徽阜阳高二期中] 在如图所 示的空间直角坐标系中,正方体 ABCD- $A_1B_1C_1D_1$ 的棱长是 1,下列结论正确的是(
 - A. 直线 DD_1 的一个方 向向量为(0,0,1)



- C. 平面 ABB_1A_1 的一个 法向量为(0,1,0)
- D. 平面 B_1CD 的一个法向量为(1,1,1)

二、填空题

- **10.** 已知 $A\left(0,2,\frac{19}{8}\right)$, $B\left(1,-1,\frac{5}{8}\right)$, $C\left(-2,1,\frac{5}{8}\right)$ $\left(\frac{5}{8}\right)$,设平面 ABC 的法向量为 a = (x, y, z),则 x:y:z=
- 11. 如图,放置于空间直角 坐标系中的棱长为2的 正四面体 A-BCD 中, H是底面中心,DH上平面 ABC,写出: (1)直线 BC 的一个方向

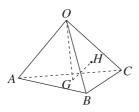


- (2)直线 OD 的一个方向向量:
- (3)平面 BHD 的一个法向量:

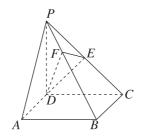
12. 在空间直角坐标系 Oxyz 中,已知平面 α 的一个法向量为 n = (1, -1, 2),且平面 α 过点 A(0, 3, 1). 若 P(x, y, z)是平面 α 内的任意一点,则点 P 的坐标满足的方程是

三、解答题

13. 如图所示,在四面体 O -ABC 中,G, H 分别是 $\triangle ABC$, $\triangle OBC$ 的重心,设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, $\overrightarrow{OC} = c$, 以 $\{a,b,c\}$ 为空间的一个基底,求直线 OG 和 GH 的一个方向向量.

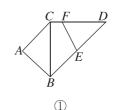


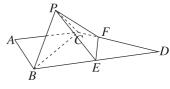
14. 如图,在四棱锥 P-ABCD 中,PD \bot 底面 AB-CD,PD=AD=DC,底面 ABCD 为正方形,E 为 PC 的中点,点 F 在 PB 上,问当点 F 在何位置时, \overrightarrow{PB} 为平面 DEF 的一个法向量?



▶ 思维探索 选做题

- 15. (多选题) [2024・重庆开州中学高二月考] 已知点 P 是平行四边形 ABCD 所在平面外一点,如果 \overrightarrow{AB} = (2,-1,-4), \overrightarrow{AD} = (4,2,0), \overrightarrow{AP} = (-1,2,-1),那么下列结论中正确的是 ()
 - A. $AP \perp AB$
 - B. $AP \perp AD$
 - $C. \overrightarrow{AP}$ 是平面 ABCD 的一个法向量
 - D. $\overrightarrow{AP}//\overrightarrow{BD}$
- 16. $[2024 \cdot 浙江丽水高二联考]$ 在四边形 ABDC中(如图①), $\angle BAC = \angle BCD = 90^{\circ}$, AB = AC, BC = CD, E, F 分别是边 BD, CD 上的点, 将 $\triangle ABC$ 沿 BC 翻折, 将 $\triangle DEF$ 沿 EF 翻折, 使 得点 D 与点 A 重合(记为点 P), 且平面 PBC \bot 平面 BCFE (如图②).
 - (1)求证: $CF \perp PB$;
 - (2)求平面 PEF 的一个法向量.





2

第2课时 空间中直线、平面的平行

一、选择题

- **1**. 已知直线 l_1 的一个方向向量为 $v_1 = (1,2,3)$, 直 线 l_2 的一个方向向量为 $v_2 = (\lambda, 4, 6)$, 若 $l_1 // l_2$, 则 λ =
 - A. 1

B. 2

C. 3

- D. 4
- 2. [2024·广东东莞韩林高级中学高二期中] 已知 直线 l 上有两点 A(1,2,3), B(2,1,1), 平面 α 的 一个法向量为n = (-3,2,m),若 $l//\alpha$,则m =

- A. 2
- C. $-\frac{1}{2}$ D. $-\frac{5}{2}$
- **3**. 如果直线 l 的一个方向向量为 a = (-2,0,1), 且 直线 l 上有一点 P 不在平面 α 内, 平面 α 的一个 法向量是b=(2,0,4),那么
 - A. 直线 l 与平面 α 垂直
 - B. 直线 l 与平面 α 平行
 - C. 直线 l 在平面 α 内
 - D. 直线 l 与平面 α 相交但不垂直
- 4. [2024・陕西宝鸡高二期中] 在正方体 ABCD- $A_1B_1C_1D_1$ 中, PQ 与直线 A_1D 和 AC 都垂直, 则直线 PQ 与 BD_1 的关系是
 - A. 异面
 - B. 平行
 - C. 垂直不相交
 - D. 垂直且相交
- 5. [2024·广东肇庆广信中学高二期中] 已知直线 l 的方向向量为m,平面 α 的法向量为n,则"m· n = 0"是" $l //\alpha$ "的
 - A. 充要条件
 - B. 充分不必要条件
 - C. 必要不充分条件
 - D. 既不充分也不必要条件
- **6**. 若平面 α 的法向量为 n = (2, -3, 1), $\overrightarrow{AB} = (1.0)$. (-2), $\overrightarrow{AC} = (1,1,1)$,且平面 α 与平面 (ABC) 不重 合,则
 - A. 平面 α //平面 ABC
 - B. 平面 α | 平面 ABC
 - C. 平面 α 与平面 ABC 相交但不垂直
 - D. 以上均有可能

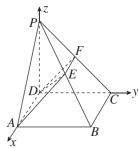
7. [2024·重庆开州中学高二月考] 若平面 α的一 个法向量为 $\mathbf{u}_1 = (-3, y, 2)$, 平面 β 的一个法向 量为 $u_2 = (6, -2, z)$,且 $\alpha //\beta$,则y+z的值是

()

- A. -3
- B. -4

C. 3

- D. 4
- 8. (多选题)已知空间中两条不同的直线 l, m, m不同的平面 $\alpha, \beta, 则下列说法中错误的是 ()$
 - A. 若直线 l 的一个方向向量为 a = (1, -1, 2), 直线 m 的一个方向向量为 b=(2,-2,4),则 $l /\!/ m$
 - B. 若直线 l 的一个方向向量为 a = (0,1,-1), 平面 α 的一个法向量为 n = (1, -1, -1), 则 $l /\!/ \alpha$
 - C. 若平面 α , β 的一个法向量分别为 $n_1 = (0,1,$ 3), $\mathbf{n}_2 = (1,0,2)$, \emptyset $\alpha //\beta$
 - D. 若平面 α 经过 A(1,0,-1), B(0,-1,0),C(-1,2,0)三点,向量 n = (1,u,t) 是平面 α 的一个法向量,则u+t=1
- 9. (多选题)已知四棱锥 P-ABCD 中,底面 ABCD 是 正方形, $PD \perp$ 平面 AB-CD, PD = AB = 1, E 是 PB 的中点,F 是 PC 的中 点,建立如图所示的空间

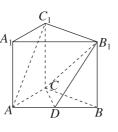


- 直角坐标系,则下列说法中正确的是
- A. 平面 ADE 的一个法向量是(0,-1,1)
- B. 直线 AE //平面 PCD
- C. 直线 FE//平面 PAD
- D. 直线 DF //平面 PAB

二、填空题

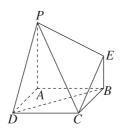
- **10**. 已知直线 l 的一个方向向量是 n = (4, -2, 3), 平面 α 的一个法向量是 m = (1,2,0),则 l 与 α 的位置关系为 .
- 11. [2024·四川南充一中高二期中] 已知直线 l 的一个方向向量为(2, m, 1),平面 α 的一个法 向量为 $\left(1,\frac{1}{2},2\right)$,且 $l//\alpha$,那么 m=____.

班级		
姓名		
答题区	题号	
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	

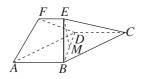


三、解答题

13. 如图,四边形 ABCD 是正方形,PA 上平面 AB-CD, EB // PA, AB = PA = 4, EB = 2, 求证: BD// 平面 PEC.

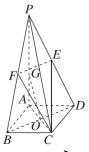


14. 在如图所示的几何体中,四边形 ABCD 为平行四边形, $\angle ABD = 90^{\circ}$, $EB \perp$ 平面 ABCD,EF //AB,AB = 2, $EB = \sqrt{3}$,EF = 1, $BC = \sqrt{13}$,且 M 是 BD 的中点. 求证:EM // 平面 ADF.



▶ 思维探索 选做题

15. 《九章算术》是我国古代的数学名著,书中将底面为矩形,且有一条侧棱垂直于底面的四棱锥称为阳马. 如图,在阳马 *P-ABCD* 中, *PA* 上平面 *ABCD*,底面 *ABCD* 是正方形, *AC* 与 *BD* 交于点 *O*, *B*



E,F 分别为 PD,PB 的中点,点 G 满足 $\overrightarrow{AG} = \lambda \overrightarrow{AP} (0 < \lambda < 1), <math>PA = 4, AB = 2$,若 OG // 平面 CEF,则 $\lambda =$

- A. $\frac{1}{4}$
- B. $\frac{1}{3}$

C. $\frac{1}{2}$

- D. $\frac{2}{3}$
- **16.** 如图,在正三棱柱 ABC- $A_1B_1C_1$ 中, AB = 4, $AA_1 = 3$, M 是 AB 的中点, $AN = 2NA_1$, 点 P 在 B_1N 上,且 $\overline{B_1P} = \lambda \overline{B_1N}$ (0 $\leqslant \lambda \leqslant 1$). 是否存在实数 λ , 使得 MP // BC_1 ? 若存在,求出 λ 的值; 若不存在,请说明理由.

